달력

12

« 2024/12 »

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

 

AI 사고를 위한 인공지능 교육  / 한선관 외

006.3 한53ㅇ   자연과학열람실(4층)

 

책소개

 

미래 교육의 핵, 인공지능 교육의 청사진을 제시한다!
인공지능 교육의 논리적 모델을 제시, 과학적·체계적으로 AI 교육에 접근!

AI 사고를 위한 인공지능 교육

미래 교육의 핵심 코드는 단연 인공지능이다. 교육부가 올해 상반기 중 미래 교육 추진단을 신설하기 위해 분주한 것은 물론 최근 유은혜 교육부 장관이 발표한 미래 교육을 이끄는 데 필요한 다섯 가지 정책 중 AI 교육 활성화도 포함된 바 있다. 이와 같이 시급하고 중차대한 인공지능 교육을 위해 각급 학교, 교사, 교육대학원에서 제대로 된 역량을 갖춘 교사를 양성하기 위해 마련된 인공지능 교육에 새로운 표준을 마련하기 위해 집필된 교재가 바로 이 책이다.

인공지능 교육의 권위자로 인공지능 교육 프레임워크를 개발하고 인천시 교육청과 인공지능 교육 발전 협약을 맺는 등 활발하게 활동 중인 한국인공지능교육학회의 한선관 학회장(경인교대 컴퓨터교육과 교수) 주도로 미래인재연구소의 교사들과 인공지능교육연구소의 멤버들이 참여해 완성된 이 책은 인공지능 교육의 가이드라인을 제시할 뿐 아니라 인공지능 교육의 논리적 모델과 인공지능 교육의 표준화를 위한 기초 자료를 제시하는 포괄적인 내용을 담고 있다. 또, 인공지능의 기초 학문과 컴퓨터 과학에 대한 내용을 바탕으로 인공지능의 주요 개념과 기술을 안내하며 다양한 인공지능의 교육 접근 방법으로서 이해 교육, 활용 교육, 가치 교육을 제시한다. 특히 실제 인공지능을 현장 교육에 적용하기 위한 교육 방법과 수업 사례를 제시한다.

이 책은 인공지능 교육을 다양하게 준비하고 있는 교육자나 연구자, 관심 있는 학생들에게도 새로운 이정표가 될 것으로 보인다.

 

목차

 

추천의 글
추천사
저자 약력
머리말
인공지능 교육의 가이드라인

1부 인공지능 사회
1. 인공지능의 시대
2. 생활 속 인공지능
2.1 인간에게 도전장을 내미는 인공지능
2.2 인공지능 심사위원
2.3 창의성을 발휘하는 인공지능
3. 세상을 바꾸는 인공지능
3.1 인공지능으로 바뀌는 사회의 통계적 접근
3.2 인공지능과 직업
4. 인공지능의 영향
4.1 AI 시대를 대비하는 인류
4.2 인공지능의 미래
4.3 직업과 인공지능의 일자리 대체

2부 교육과 인공지능
1. 국가 경쟁력, 인공지능
2. 사활을 건 인공지능 인재 양성
3. 국외의 인공지능 교육 사례
4. 국내의 인공지능 교육 정책
5. 인공지능 교육의 필요성
6. 인공지능 교육 도입의 근거
7. 인공지능 교육의 접근
8. 인공지능 교육을 바라보는 다양한 관점
9. 인공지능 교육의 유형
10. 인공지능 통합 교육 모형
11. 인공지능 교육이 추구하는 사고력
12. 인공지능 사고의 필요성
13. 컴퓨팅 사고력과 인공지능 사고력
14. 인공지능 사고력의 정의
15. 인공지능 사고력의 확장
16. 강(초)인공지능 시대를 대비하는 교육
17. 모두를 위한 인공지능 교육

3부 인공지능의 지식 체계
1. 인공지능의 기초
1.1 인공지능의 역사
1.2 인공지능과 인간 지능
1.3 에이전트 모형
1.4 인공지능과 소프트웨어
1.5 인공지능의 기초 지식
1.6 인공지능 알고리즘과 활용 분야
1.7 인공지능의 영역
1.7.1 내적 기능
1.7.2 외적 기능
1.7.3 상호작용
1.8 인공지능과 학문적 체계의 구성도
2. 기계 탐색: 문제와 탐색
2.1 문제와 해답, 상태
2.2 무작위적 탐색 방법
2.2.1 너비우선 탐색
2.2.2 깊이우선 탐색
2.2.3 깊이제한 탐색
2.2.4 양방향 탐색
2.3 정보를 사용하는 탐색 전략들
2.3.1 그리디 알고리즘
2.3.2 에이스타(A*) 알고리즘
2.4 최적화 탐색 전략
2.4.1 언덕 오르기 탐색
2.4.2 유전 알고리즘
2.5 게임 탐색
2.5.1 최소-최대 알고리즘
2.5.2 몬테카를로 알고리즘
2.6 제약 조건 만족 문제(백트래킹 탐색)
2.7 그 외의 탐색과 탐색 문제
3. 기계 추론: 지식과 추론
3.1 지식 기반 인공지능의 구성 요소
3.2 프레임
3.3 논리
3.3.1 명제 논리
3.4 의미망
3.5 계획 수립
3.5.1 계획 수립의 알고리즘
3.5.2 계획 수립 문제의 형태
3.5.3 계획 수립 그래프
3.5.4 그 밖의 언어들
3.6 불확실성
3.6.1 불확실성의 기본적인 확률
3.6.2 베이즈 정리
3.7 확률적 추론
3.8 의사결정
4. 기계학습: 자료와 학습
4.1 기계학습 개요
4.2 지도학습
4.2.1 회귀
4.2.2 선형회귀
4.2.3 로지스틱 회귀
4.2.4 결정 트리
4.2.5 SVM
4.2.6 랜덤 포레스트
4.2.7 나이브 베이즈
4.3 비지도학습
4.3.1 K-Means
4.3.2 가우시안 혼합 모델
4.3.3 주성분 분석
4.3.4 인공 신경망
4.3.5 딥러닝
4.3.6 합성곱 신경망
4.4 강화학습
4.4.1 MDP와 MRP
4.4.2 A3C
4.5 빅데이터
5. 데이터 과학: 자료와 과학
5.1 데이터 과학의 학문 분야
5.2 데이터 과학의 절차
5.3 데이터 과학 분야의 전문가 유형
5.4 데이터 과학의 도구
5.5 데이터 과학과 BI(비즈니스 인텔리전스)의 차이점
5.5.1 데이터 과학의 응용 분야
5.6 데이터 과학과 머신러닝의 주요 차이점
6. 기계 인식: 감각과 인식
6.1 패턴 인식
6.2 영상 형성
6.2.1 기본 영상 감지
6.3 영상 처리
6.3.1 모서리 검출
6.3.2 텍스처
6.3.3 광학 흐름
6.3.4 영상 분할
6.4 물체 인식
6.4.1 HOG
6.4.2 R-CNN
6.4.3 YOLO & SSD
6.5 3차원 세계
6.6 음성 인식
7. 자연어 처리: 언어와 소통
7.1 언어 분석의 확률적 접근
7.2 NLP의 주요 아이디어 - 텍스트 분류
7.3 자연어의 특징과 자연어 처리 구성 요소
7.3.1 형태학적 분석 및 어휘 분석
7.3.2 구문 분석
7.3.3 의미 분석
7.3.4 담화 통합과 실용적 분석
7.4 딥러닝 기반 자연어 처리
7.5 화자 인식
8. 로보틱스: 행동과 작용
8.1 로봇의 하드웨어
8.1.1 로봇의 센서
8.1.2 로봇의 구동기
8.2 로봇의 지각
8.2.1 위치 결정
8.2.2 지도 작성
8.3 로봇 계획 수립
8.4 로봇 소프트웨어
9. 인공지능 이슈: 인공지능과 인간, 사회적
영향
9.1 약인공지능과 강인공지능
9.2 의식과 감각질
9.3 인공지능의 윤리적 문제
9.3.1 책임성: 첵임의 주체
9.3.2 투명성: 설명 가능 인공지능, 활용의
투명성
9.3.3 공정성: 데이터 편향성, 활용 공정성
9.3.4 기타 윤리적 문제

4부 인공지능을 이해하는 교육
1. AI 이해 교육의 개요
2. 소프트웨어 교육과 AI 이해 교육과의 관계
2.1 AI 이해 교육에서 요구하는 인재상과 학습자 역량
2.2 AI 이해 교육에서 추구하는 역량
2.3 AI 이해 교육의 목표
3. AI 이해 교육과정의 설계 유형
4. AI 이해 교육의 내용 체계
4.1 AI 이해 교육의 세 가지 대영역
4.1.1 ‘지능 발현’ 영역
4.1.2 ‘상호작용’ 영역
4.1.3 ‘사회 영향’ 영역
4.2 3영역의 학습을 위한 일곱 가지 대주제
4.3 AI 이해 교육을 위한 표준 프레임워크
5. AI 이해 교육 과정의 설계 방안
6. AI 이해 교육의 방법
6.1 지식 신장을 위한 교수·학습 모형
6.2 기능 신장을 위한 교수·학습 모형
6.3 태도를 위한 교수·학습 모형
7. AI 이해 교육 계층별 교수·학습 전략
8. AI 이해 교육의 평가

5부 인공지능을 활용하는 교육
1. AI 활용 교육의 개요
2. AI 활용 교육을 통한 역량 신장
3. 교육 주체와 AI 활용 교육
4. AI 활용 교육을 위한 도구
5. AI 활용 교육의 유형
5.1 AI 교과 활용 교육
5.2 AI 융합 교육(STEAM 교육)
5.3 AI 기반 교육
5.4 교육 정책 업무의 AI 활용
6. AI 교과 활용 교육
6.1 음악 교과 AI 활용 교육 예시
6.1.1 음악 교과의 성격
6.1.2 음악 교육의 목표
6.2 각 교과별 AI 활용 교육 사례
6.2.1 도덕(윤리) 교과 AI 활용 교육
6.2.2 국어 교과 AI 활용 교육
6.2.3 수학 교과 AI 활용 교육
6.2.4 사회 교과 AI 활용 교육
6.2.5 과학 교과 AI 활용 교육
6.2.6 체육 교과 AI 활용 교육
6.2.7 미술 교과 AI 활용 교육
6.2.8 실과(기술·가정) 교과 AI 활용 교육
6.2.9 영어 교과 AI 활용 교육
7. AI 융합 교육
7.1 AI 서비스를 활용한 산업 융합 프로젝트의 절차
7.2 산업 융합 문제해결 수업 사례: 자동차 운전 지원
8. AI 기반 교육(온라인 교육 시스템, 에듀테크)
8.1 AI와 에듀테크의 만남
8.2 교육에서의 AI 활용 영역
8.2.1 대학교의 활용 사례
9. 교육 정책 업무의 AI 활용
9.1 교육 정책에서 AI를 활용하기 위한 다양한 변수와 요인
9.2 교육 정책에서 AI 활용 사례
10. AI 활용 교육을 위한 통합 플랫폼

6부 인공지능을 바라보는 교육
1. AI 가치 교육의 개요
2. AI 윤리에 대한 초창기 연구
3. 산업 분야별 AI 윤리 이슈
3.1 제조 분야: 자율주행자동차
3.2 금융 분야: 로보어드바이저
3.3 의료 분야: 건강 의료
3.4 군사 분야: 자율 무기 체계
4. AI 윤리의 국내외 사례
5. AI 가치 교육의 접근
5.1 국내외의 AI 윤리 교육 현황
6. AI 가치 교육의 주제 구성
6.1 AI 가치 교육의 다양한 주제 구성
7. AI 가치 교육의 모델
8. 인간 중심, 선한 AI
8.1 건강을 위한 AI 프로젝트
8.2 지구 환경을 위한 AI 프로젝트
8.3 장애인을 위한 AI 프로젝트
8.4 문화 유산을 위한 AI 프로젝트
8.5 인도주의를 위한 AI
9. 책임성, 책임 있는 AI
10. 투명성, 설명 가능한 AI
10.1 설명 기법의 네 가지 모드
10.2 설명 가능한 AI 모드의 개발 방법
11. 개인정보보호 vs. 데이터 3법
11.1 정보통신망법 개정안
11.2 신용정보법 개정안
12. 공정성과 비차별성
12.1 알고리즘 도덕성
13. 안정성과 신뢰성

7부 인공지능 수업의 실제
◈ AI 수업의 유형과 접근 방법
1. AI 지식 중심의 수업
1.1 지식 중심 수업 1: AI 인지 모델링 수업
1.1.1 AI 인지 모델링 수업 전략 - 커넥티드 전략
1.1.2 AI 인지 모델링 수업 단계
1.2 지식 중심 수업 2: AI 개념 형성 수업
1.3 지식 중심 수업 3: AI 발견 탐구 수업
1.4 지식 중심 수업 4: AIT 사고 기반 수업(SW·AI 연계 수업)
2. AI 기능 중심 수업
2.1 AI 기능 중심 수업 1: AI 교육 플랫폼을
활용한 프로그래밍 수업
2.2 AI 기능 중심 수업 2: 데이터 분석 프로그래밍 수업
2.3 AI 기능 중심 수업 3: AI 프레임워크를 활용한 프로그래밍 수업
2.4 AI 텐저블 컴퓨팅 수업 1: AI 엣지 컴퓨팅
2.5 AI 텐저블 컴퓨팅 수업 2: AI 메이커 활동
2.6 AI 텐저블 컴퓨팅 수업 3: AI 로봇 활용
3. AI 태도 중심 수업
3.1 AI 태도 중심 수업 1; 기술 중심 수업
3.2 AI 태도 중심 수업 2; 사회 중심 수업
3.3 AI 태도 중심 수업 3: 윤리 중심 수업

8부 인공지능 교육 실습을 위한 지원
1. AI 교육을 위한 실습 자원의 유형
2. 범용적인 AI 상용 플랫폼
2.1 구글 AutoML
2.2 슈퍼어노테이트
2.3 애플 CreateML
2.4 프릿츠 AI
2.5 런웨이ML
2.6 Obviously AI
2.7 MakeML
2.8 페이스북
2.9 아마존
2.10 마이크로소프트
2.11 IBM
2.12 네이버
3. AI 챗봇 플랫폼
3.1 AI 챗봇 플랫폼의 종류
3.1.1 다이얼로그플로우
3.1.2 매니챗
3.1.3 챗봇닷컴
3.1.4 챗퓨얼
3.1.5 모바일멍키
3.1.6 프레시챗
4. AI 교육을 위한 특화 플랫폼
4.1 플랫폼의 종류
4.1.1 ML4Kids
4.1.2 티처블 머신
4.1.3 코그니메이트
4.2 AI 체험형
4.2.1 플레이그라운드 텐서플로
4.2.2 위드 구글 AI 실험실
4.2.3 오토드로우
4.2.4 퀵드로우
4.2.5 마젠타
4.2.6 컴퓨터 비전
4.2.7 이미지 자동 편집
4.2.8 단어 인식 게임
4.3 교육용 프로그래밍 언어 도구
4.3.1 EPL
4.3.2 스크래치
4.3.3 엔트리
4.3.4 엠블록
4.3.5 딥 아이(Deep AI)
5. AI 개발을 위한 프로그래밍 언어
5.1 프로그래밍 언어의 종류
5.1.1 Python
5.1.2 R
5.1.3 LISP
5.1.4 Prolog
5.1.5 C/C++
5.1.6 Java
5.1.7 Javascipt
5.1.8 Julia
5.1.9 기타 프로그래밍 언어
5.2 대표적인 AI 프레임워크 라이브러리
5.2.1 Theano
5.2.2 Tensorflow
5.2.3 Keras
5.2.4 Lasagne
5.2.5 Caffe
5.2.6 Deep Learning 4j
5.2.7 MxNet
5.2.8 Torch
5.2.9 CNTK
5.3 파이썬 핵심 라이브러리와 도구들
5.3.1 Numpy
5.3.2 Scipy
5.3.3 matapololib
5.3.4 pandas
5.3.5 주피터 노트북
5.4 AI 프로그래밍 개발 학습
5.4.1 코드닷오알지
5.4.2 생활 코딩
5.4.3 프롤로그 교육
5.5 AI 학습형
5.5.1 Al4School
5.5.2 Al4TEACHER
5.5.3 테크노베이션
5.5.4 Element of AI
5.5.5 edX
5.5.6 SW-AI 교육 포털
5.5.7 창의 컴퓨팅
5.5.8 구글의 AI A-Z
5.5.9 AI 크래시 코스
5.5.10 마이크로소프트의 AI 학습 사이트
5.5.11 오픈 AI

참고 문헌

 

< 출처 :" 교보문고 >

:
Posted by sukji

 

(현직 줌(ZOOM) 강사가 알려주는) 하루 만에 ZOOM으로 프로 강사되기   : 유튜브, 블로그 강좌와 함께 배워요!  / 김가현  006.696 김11ㅎ   자연과학열람실(4층)

 

 

책소개

 

ZOOM은 원격 온라인 강의나 화상 회의에 가장 많이 사용하는 프로그램으로, 특히 코로나로 인해 이제는 필수적인 프로그램으로까지 인식된 상태입니다.
그러나 초보 분들은 이것저것 ZOOM의 모든 기능을 담아 놓은 두꺼운 책을 구입한 후 어려움을 겪는 경우를 많이 보았습니다. 사실 ZOOM의 기본적인 기능 몇 가지만 알면 누구나 온라인 강의가 가능합니다. 그래서 이 책에서는 그대로 따라하기만 하면 ZOOM의 기본적인 기능을 마스터하여 바로 온라인 강의를 할 수 있도록 핵심적인 내용 위주로 구성하였습니다.
나머지 고급 기능들은 강의를 하면서 그때그때 터득하면 되며, 이를 위해 저자 유튜브와 블로그에 다양한 팁들을 별도로 제공합니다

 

출판사 서평

 

코로나 2.5단계를 겪은 대한민국은 그야말로 비상입니다. 아이들은 유치원, 학교, 학원 등에 갈 수 없는 환경이고 모든 수업이 비대면으로 이루어지고 있습니다. 특히 강사들은 수강생을 모집하여 오프라인에서 강의할 기회가 확연히 줄어들었습니다. 이런 상황에서 오프라인 강의만 고집할 순 없습니다. “컴맹인데 어떡하지? 이렇게까지 해야 하나?” 하며 차일피일 온라인 강의를 미루던 분들도 지금 Zoom 사용법을 배우고 있습니다.
코로나로 가장 큰 혜택을 받은 것이 바로 온라인 화상 회의 시스템 Zoom입니다. 온라인 강의에 최적화된 Zoom 시스템은 다른 화상 회의 시스템보다 빠르게 퍼지고 있습니다. 내가 나이가 많아서 혹은 컴퓨터를 잘 다루지 못한다고 해서 피하기만 해서는 Digital Divide(정보격차)를 겪을 수밖에 없습니다.
이 책에서는 100회가 넘는 Zoom 강의와 수많은 강사에게 Zoom 사용법을 교육하면서 얻은 필자의 다양한 노하우가 제공됩니다.
이 책 한 권이면 온라인 강의의 두려움을 떨치고 프로 강사가 될 수 있을 것입니다.

 

목차

Step 1: Zoom 준비하기
1. Zoom이 뭐예요?
2. 왜 Zoom이 대세인가?
3. Zoom강의를 위한 준비물
Power Upgrade 웹캠, 마이크 구매 시 확인 할 사항
4. 해본 사람들만 아는 Zoom 강사 필수 체크 요소

Step 2: Zoom 강의 준비하기
1. Zoom이 처음이에요.
2. Zoom 가격 및 결제하기
Power Upgrade 결제할 때 주의사항
3. 로그인 하여 프로필 변경하기
4. 새 회의 예약하기
Power Upgrade 빠르게 회의예약 및 설정 보기
4. 회의 설정 변경하기
6. 수강생에게 강의 초대하기

Step 3: Zoom 강의 시작하기
1. 회의 시작 화면
2. 음소거
3. 비디오
4. 화면 공유하기
5. 가상 배경 바꾸기
Power Upgrade 가상 배경 이미지 추가하기
6. 비디오 필터 적용하기
7. 채팅창 이용하기
8. 주석 작성 이용하기
9. 기록(녹화)하기
10. 참가자(수강생) 관리
11. 소회의실 만들기
12. 반응 이용하기
13. 라이브 스트리밍 해보기
14. 보안
15. 회의 끝내기

Step 4: 스마트폰으로 Zoom 참여하기
1. 강의 참여하기
2. 채팅하기
3. 이름 바꾸기
4. 주석 작성하기
5. 스마트폰을 웹캠으로 사용하기(DroidCam 이용)
6. 스마트폰(삼성)을 Zoom에서 보여주기

Step 5: Zoom 강의 실전 정복하기
1. 참여형 강의(소통 강의)로 바꾸는 Zoom 실전 팁 5가지
2. 강의 종류에 따른 Zoom 스킬
3. 많이 묻는 질문(Q&A)

맺음말
1. 온라인 강의의 장점과 활용법
2. 온라인 강의로 강사 되자! 나도 오늘부터 Zoom 강사다

부록 1 안내 메일 보내기
부록 2 수업 전 안내사항 PPT

 

< 출처 : 교보문고 >

:
Posted by sukji